45 research outputs found

    Contribució a la caracterització del microscopi de força atòmica

    Get PDF
    Des de la seva creació, el microscopi de força atòmica (AFM) ha estat àmpliament utilitzat sobretot per la caracterització de superfícies, obtenint imatges topogràfiques amb una resolució espacial de l’ordre o fins i tot inferior al nanòmetre. L’AFM també ha estat utilitzat per manipular matèria a la nanoescala. El fet de no necessitar de materials o superfícies conductores elèctriques, l’ha convertit en un instrument valuós per camps com la química, la geologia i la ciència dels materials. Gràcies a que pot treballar en condicions ambientals i favorables a la vida, és a dir, en aire o líquid i amb la presència d’un determinat grau d’humitat ambiental, sense necessitat de fer el buit ni de recobrir les mostres amb capes conductores, el converteix en una eina única per a la biologia. Les contribucions a la caracterització de l’AFM permeten millorar les seves prestacions i a la vegada avançar en la comprensió dels fenòmens físics a nivell de la nanoescala. En aquest treball presentem el desenvolupament d'una metodologia objectiva i la seva implementació numèrica corresponent, que proporciona informació quantitativa sobre la sensibilitat que podem obtenir, en termes de resolució espacial, dels dos modes dinàmics més utilitzats en l’AFM. Utilitzem el concepte d’horitzó espacial per descriure i quantificar la capacitat potencial de cada mode dinàmic per detectar un defecte atòmic en una superfície, contràriament a treballs anteriors que eren qualitatius i relativament subjectius. També presentem estudis numèrics relacionats amb els fenòmens nanoscalars que tenen lloc quan hi ha interacció entre dues superfícies recobertes de capes d’aigua absorbides i la pertinent formació i ruptura de ponts capil·lars. Els resultats obtinguts reprodueixen més acuradament el comportament experimental observat, que no havia estat anteriorment reproduït ni publicat. Concretament, en aquesta contribució reportem per primera vegada l’existència d'una força neta atòmica d’interacció pràcticament independent de la distància de separació. Aquesta força s’estén a uns quants nanòmetres per sobre de superfícies que han estat exposades durant un temps a la humitat en condicions ambientals. Finalment presentem un estudi on relacionat amb fenòmens i propietats químiques i/o mecàniques de la nanoescala, com ara la presència de capes d'aigua absorbides, hi discutim com es produeix l'excitació de subharmònics en l’AFM dinàmic. S’analitza la possibilitat d’utilitzar els subharmònics com una eina per a la detecció d’aigua sobre superfícies heterogènies a la nanoescalaThe atomic force microscope (AFM) is currently employed for high spatial sample characterization in the nanoscale. Since the surfaces do not need to be electrical conductors, AFM has become a valuable tool for fields such as chemistry, geology and materials science. The AFM can be operated under environmental and bio-friendly conditions making it a unique tool for biology. Contributions to the characterization of the AFM allow improving its performance and simultaneously advance in the understanding of physical phenomena at the nanoscale. This works presents the development of a methodology that provides quantitative information about the sensitivity that can be obtained in terms of spatial resolution in the two main modes of dynamic AFM. The concept of spatial horizon is employed to describe and quantify the capacity of each dynamic mode to detect an atomic defect in a surface as opposed to previous works which where qualitative and relatively subjective. We further present numerical models related to nanoscale phenomena observed in the interaction between water films absorbed on surfaces. The results presented here accurately reproduce phenomena that has not been previously reproduced nor reported. We report for the first time the existence of an atomic net interaction force that is practically independent of the separation. The force extends a few nanometers above surfaces exposed to moisture over time in ambient conditions. Finally, a study related to chemical and/or mechanical nanoscale properties and phenomena, such as the presence of absorbed water layers, is presented and discussed in terms of subharmonic excitation in dynamic AFM. A theory with the potential of employing subharmonics as a tool for the detection of water on nanoscale heterogeneous surfaces is also put forward

    Synchronization in real time of two Stewart platforms

    Get PDF
    This paper presents two mechanisms that have been designed, built and put into operation by our research team at the Universitat Politècnica de Catalunya (UPC), Barcelona (Spain) which have many practical applications in the scientific, industrial and academic fields: the Stewart platforms. They are electromechanical systems capable of moving with six degrees of freedom, that is, three translations and three rotations that allow simulating the movement of any object in the space. The characteristics of a Stewart platform for its design, assembly and construction are presented. However, the main contribution of this paper is to demonstrate that it is possible to synchronize, in real time, both platforms when one of them is randomly moving and the other follows with high precision the movements of the first platform. The details about the algorithms and synchronization method are provided.Peer ReviewedPostprint (published version

    An effective strategy of real-time vision-based control for a Stewart platform

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksA Stewart platform is a kind of parallel robot which can be used for a wide variety of technological and industrial applications. In this paper, a Stewart platform designed and assembled at the Universitat Polit`ecnica de Catalunya (UPC) by our research group is presented. The main objective is to overcome the enormous difficulties that arise when a real-time vision-based control of a fast moving object placed on these mechanisms is required. In addition, a description of its geometric characteristics, the calibration process, together with an illustrative experiment to demonstrate the good behavior of the platform is given.Postprint (author's final draft

    Cantilever dynamics in amplitude modulation AFM: continuous and discontinuous transitions

    Get PDF
    Transitions between the attractive and the repulsive force regimes for amplitude modulation atomic force microscopy (AFM) can be either discontinuous, with a corresponding jump in amplitude and phase, or continuous and smooth. During the transitions, peak repulsive and average forces can be up to an order of magnitude higher when these are discrete. Under certain circumstances, for example, when the tip radius is relatively large (e.g. R > 20–30 nm) and for high cantilever free amplitudes (e.g. A0 > 40–50 nm), the L state can be reached with relatively low set-points only (e.g. Asp/A0 < 0.30). We find that these cases do not generally lead to higher resolution but increase the background noise instead. This is despite the fact that the imaging can be non-contact under these conditions. The appearance of background noise is linked to increasing cantilever mean deflection and tip–surface proximity with increasing free amplitude in the L state. Cantilever dynamics in amplitude modulation AFM: Continuous and discontinuous transitions (PDF Download Available). Available from: https://www.researchgate.net/publication/231025693_Cantilever_dynamics_in_amplitude_modulation_AFM_Continuous_and_discontinuous_transitions [accessed Mar 27, 2017].Peer ReviewedPostprint (author's final draft

    Unlocking higher harmonics in atomic force microscopy with gentle interactions

    Get PDF
    In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity.Peer ReviewedPostprint (published version

    The Mendeleev-Meyer force project

    Get PDF
    Here we present the Mendeleev–Meyer Force Project which aims at tabulating all materials and substances in a fashion similar to the periodic table. The goal is to group and tabulate substances using nanoscale force footprints rather than atomic number or electronic configuration as in the periodic table. The process is divided into: (1) acquiring nanoscale force data from materials, (2) parameterizing the raw data into standardized input features to generate a library, (3) feeding the standardized library into an algorithm to generate, enhance or exploit a model to identify a material or property. We propose producing databases mimicking the Materials Genome Initiative, the Medical Literature Analysis and Retrieval System Online (MEDLARS) or the PRoteomics IDEntifications database (PRIDE) and making these searchable online via search engines mimicking Pubmed or the PRIDE web interface. A prototype exploiting deep learning algorithms, i.e. multilayer neural networks, is presented.Award-winningPostprint (author's final draft

    Establishing nanoscale heterogeneity with nanoscale force measurements

    Get PDF
    Establishing the presence or absence of nanoscale compositional heterogeneity with nanoscale resolution is becoming instrumental for the development of many fields of science. Force versus distance measurements and parameters directly or indirectly derived from these profiles can be potentially employed for this purpose with sophisticated instruments such as the atomic force microscope (AFM). On the other hand, standards are necessary to reproducibly and conclusively support hypothesis from experimental data and these standards are still emerging. Here, we define a set of standards for providing data originating from atomic force measurements to be employed to compare between sample properties, parameters, or, more generally, compositional heterogeneity. We show that reporting the mean and standard deviation only might lead to inconsistent conclusions. The fundamental principle behind our investigation deals with the very definition of reproducibility and repeatability in terms of accuracy and precision, and we establish general criteria to ensure that these hold without the need of restricting assumptions.Postprint (author’s final draft

    SISTEMES ELECTRĂ’NICS

    No full text
    FINA

    ELECTRONIC SYSTEMS

    No full text
    FINAL 2 ENGLISH2021/20222n quadrimestr

    SISTEMES ELECTRĂ’NICS

    No full text
    FINAL2021/20222n quadrimestr
    corecore